3.1 Reference Angle

Need To Know

- Reference Angle
- Definitions
- Formulas
- Exact Values

Reference Angle solves dilemma

Find θ in standard position with a terminal side through $(-1,-\sqrt{ } 3)$.

Reference Angle Definition

The reference angle for θ in standard position is the positive acute angle between the terminal side of θ and the x-axis. Denoted: the reference angle θ is $\hat{\theta}$.

IF $\theta \in$ QI
$\theta \in \mathrm{QII}$
$\theta \in$ QIII
$\theta \in$ QIV

Reference Angle \& Exact Values

Find the reference angle for each angle.

$$
\theta=97.5^{\circ} \quad \theta=1000^{\circ}
$$

Reference Angle Property
The trig function of an angle is
(except for
which you decide based on which quadrant θ terminates).

Exact Values - Practice

Reference Angle Property

trig $(\theta)=$ \qquad
Find the exact values of each:
$\sin 225^{\circ}=$
$\cos 330^{\circ}=$
$\csc 300^{\circ}=$

Exact Values - Practice

Find θ between 0° and 360° if $\cos \theta=\frac{1}{\sqrt{2}}$ with θ in QII

Exact Values - Practice

Find θ between 0° and 360° if $\sin \theta=-0.3090$ with θ in QIII

Find θ between 0° and 360° if $\cot \theta=-0.1234$ with θ in QIV

3.2 Radian Measure

Need To Know

- Two types of measure
- Definition of radian
- Formula for radian measure
- Converting between Degrees and Radians
- Exact Values

Radian Measure

Definition:
In a circle, a central angle that cuts off an \qquad equal to the \qquad is an angle measure of 1 radian.

Definition:
For angle θ, in a circle of radius r cuts an arc length of s, then the measure of θ in radians is \qquad

$$
360^{\circ}=
$$

$\leftrightarrow \rightarrow \mathrm{rad}$
a) Draw angle,
b) Find the reference angel
c) Convert both to degrees
$\theta=7 \pi / 12$

Exact Values

Memorize the basic conversions
Evaluate:
$2 \cos \left(\frac{\pi}{6}\right)$
$\sin \left(3 \cdot \frac{\pi}{6}\right)$

Deg	Rad
0°	
30°	
45°	
60°	
90°	

_ Exact Values

Evaluate:

$$
\begin{aligned}
& \cos \left(\frac{4 \pi}{3}\right) \\
& \csc \left(\frac{7 \pi}{6}\right) \\
& 4 \tan \left(-\frac{\pi}{4}\right)
\end{aligned}
$$

Need To Know

- Circle Definitions
- Calculator examples
- Domain and Range

Unit Circle Definitions

Goal: See old trig functions in a new way.
Recall:
Conclusion:
$\cos (\theta)=$ \qquad
$\sin (\theta)=$
where (x, y) is the point where
θ intersects the unit circle.

Unit Circle

It is good for seeing relationships BUT NOT
to be memorized.
Example:
Find all values of θ in radians where $\sin \theta=-\frac{1}{\sqrt{2}}$

Practice

Find all values of θ between 0 and 2π radians:

$$
\cos \theta=\frac{\sqrt{3}}{2} \quad \sin \theta=-\frac{1}{\sqrt{2}}
$$

Practice

If t is the arc distance from $(1,0)$ to $(-0.9422,0.3350)$ on the unit circle, find $\sin t, \cos t$ and $\tan t$.

Calculator Practice

Evaluate each:
$\cos \frac{\pi}{4}$

$$
\sin \frac{\pi}{7}
$$

Find θ in radians if $\sin \theta=0.8$

Domain and Range

Recall -
The input to a function is called the \qquad .
The output of a function is called the \qquad -
A function pairs each domain with only one range.
Domain - can be t, as a real number, or θ in radians
$\sin t, \cos t$: \qquad
$\tan \mathrm{t}$, sec t : All real numbers except $\mathrm{t}=\pi / 2+\mathrm{k} \pi$ for any k $\cot t$, csc t : All real numbers except $t=k \pi$ for any k

Range

$\sin t, \cos t$: \qquad .
$\tan \mathrm{t}$, cot t : All real numbers, $(-\infty, \infty)$
sec t, csc t : $(-\infty,-1]$ or $[1, \infty)$

3.4 Arc Length \& Sector Area

Need To Know

- Arc Length formula
- Sector Area formula
- Read 4.1 to get a head start
- Be sure to bring calculator everyday now

Recall:

Arc Length Formula:

Application

How far does a pendulum travel from side to side? It swings 20° in 1 sec and it is 4 feet long.

Application

How long will it take the space shuttle to travel 8400 miles? It is 200 miles up and orbits the earth every 6 hours. ($r_{\text {earth }} \simeq 4000$ miles)

Set $\mathrm{A}=$ the area of the sector made by θ. Consider proportions.

Sector Area Formula:

\qquad -'

Find the area of a sector if $\theta=\pi / 4$ and $r=4$ in.

A lawn sprinkler sprays out 30 ft and rotates 60° What is the area it covers?

