MATH 170 – CHAPTER 3 Name:

Reference Angle

Need To Know

- Definitions
- Formulas
- Exact Values

Reference Angle solves dilemma

Find θ in standard position with a terminal side through (-1, - $\sqrt{3}$).

The <u>reference angle</u> for θ in standard position is the positive acute angle between the terminal side of θ and the x-axis. Denoted: the reference angle θ is θ .

Reference Angle & Exact Values

Find the reference angle for each angle. $\theta = 97.5^{\circ}$ $\theta = 1000^{\circ}$

<u>Reference Angle Property</u> The trig function of an angle is

(except for ______ which you decide based on which quadrant θ terminates).

Exact Values - Practice

Reference Angle Property

trig (θ) = _____

Find the exact values of each:

sin 225° =

cos 330° =

csc 300° =

Find θ between 0° and 360° if cos $\theta = \frac{1}{\sqrt{2}}$ with θ in QII

Find θ between 0° and 360° if sin θ = -0.3090 with θ in QIII

Find θ between 0° and 360° if cot θ = -0.1234 with θ in QIV

end

Need To Know

- Two types of measure
 - Definition of radian
 - Formula for radian measure
- Converting between Degrees and Radians
- Exact Values

Definition: In a circle, a central angle that cuts off an _____ equal to the _____ is an angle measure of 1 radian.

Definition:

For angle θ , in a circle of radius r cuts an arc length of s, then the measure of θ in radians is _____

Memorize the basic conversions

Evaluate:

$$2\cos\left(\frac{\pi}{6}\right) \qquad \sin\left(3\cdot\frac{\pi}{6}\right)$$

Deg	Rad
0 °	
30°	
45°	
60°	
90°	

end

- Calculator examples
- Domain and Range

Unit Circle Definitions

Goal: See old trig functions in a new way. Recall:

Conclusion:

Practice

Find all values of θ between 0 and 2π radians:

$$\cos\theta = \frac{\sqrt{3}}{2} \qquad \qquad \sin\theta = -\frac{1}{\sqrt{2}}$$

If t is the arc distance from (1,0) to (-0.9422, 0.3350) on the unit circle, find sin t, cos t and tan t.

Find θ in radians if sin θ = 0.8

Recall -

The input to a function is called the _____. The output of a function is called the _____.

A function pairs each domain with only one range.

Domain – can be t, as a real number, or θ in radians

sin t, cos t: ______. tan t, sec t: All real numbers except $t = \pi/2 + k\pi$ for any k cot t, csc t: All real numbers except $t = k\pi$ for any k

<u>Range</u>

sin t, cos t:_____.tan t, cot t:All real numbers, $(-\infty, \infty)$ sec t, csc t: $(-\infty, -1]$ or $[1, \infty)$ end

Need To Know

- Arc Length formula
- Sector Area formula
- Read 4.1 to get a head start
- Be sure to bring calculator everyday now

Recall Radian Measure

Recall:

Arc Length Formula:

How far does a pendulum travel from side to side? It swings 20° in 1 sec and it is 4 feet long.

How long will it take the space shuttle to travel 8400 miles? It is 200 miles up and orbits the earth every 6 hours. ($r_{earth} \simeq 4000$ miles)

Find the area of a sector if $\theta = \pi/4$ and r = 4 in.

A lawn sprinkler sprays out 30 ft and rotates 60° What is the area it covers?

end